velora.models.base¶
Home to the agent base class for all pre-built agents.
LiquidNCPModule
¶
A base class for Liquid NCP modules.
Useful for Actor-Critic modules.
Source code in velora/models/base.py
Python | |
---|---|
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
__init__(in_features, n_neurons, out_features, *, init_type='kaiming_uniform', device=None)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_features
|
int
|
the number of input nodes |
required |
n_neurons
|
int
|
the number of hidden neurons |
required |
out_features
|
int
|
the number of output nodes |
required |
init_type
|
str
|
the type of weight initialization |
'kaiming_uniform'
|
device
|
torch.device
|
the device to perform computations on |
None
|
Source code in velora/models/base.py
Python | |
---|---|
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
|
config()
¶
Gets details about the module.
Returns:
Name | Type | Description |
---|---|---|
config |
ModuleConfig
|
a config model containing module details. |
Source code in velora/models/base.py
Python | |
---|---|
121 122 123 124 125 126 127 128 129 130 131 132 |
|
NCPModule
¶
A base class for NCP modules.
Useful for Actor-Critic modules.
Source code in velora/models/base.py
Python | |
---|---|
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
__init__(in_features, n_neurons, out_features, *, init_type='kaiming_uniform', device=None)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_features
|
int
|
the number of input nodes |
required |
n_neurons
|
int
|
the number of hidden neurons |
required |
out_features
|
int
|
the number of output nodes |
required |
init_type
|
str
|
the type of weight initialization |
'kaiming_uniform'
|
device
|
torch.device
|
the device to perform computations on |
None
|
Source code in velora/models/base.py
Python | |
---|---|
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
config()
¶
Gets details about the module.
Returns:
Name | Type | Description |
---|---|---|
config |
ModuleConfig
|
a config model containing module details. |
Source code in velora/models/base.py
Python | |
---|---|
68 69 70 71 72 73 74 75 76 77 78 79 |
|
RLModuleAgent
¶
A base class for RL agents that use modules.
Provides a blueprint describing the core methods that agents must have and includes useful utility methods.
Source code in velora/models/base.py
Python | |
---|---|
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
|
__init__(env, actor_neurons, critic_neurons, buffer_size, optim, device, seed)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
env
|
gym.Env
|
Gymnasium environment to train on |
required |
actor_neurons
|
int
|
number of decision nodes (inter and command nodes) for the actor |
required |
critic_neurons
|
int
|
number of decision nodes (inter and command nodes) for the critic |
required |
buffer_size
|
int
|
buffer capacity |
required |
device
|
torch.device
|
the device to perform computations on |
required |
seed
|
int
|
random number seed |
required |
Source code in velora/models/base.py
Python | |
---|---|
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
load(dirpath, *, buffer=False)
abstractmethod
classmethod
¶
Creates a new agent instance by loading a saved one from the dirpath
.
Also, loads the original training buffer if buffer=True
.
These files must exist in the dirpath
:
metadata.json
- contains the model, optimizer and buffer (optional) metadatamodel_state.safetensors
- contains the model weights and biasesoptim_state.safetensors
- contains the optimizer states (actor and critic)buffer_state.safetensors
- contains the buffer state (only ifbuffer=True
)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dirpath
|
str | Path
|
the location to store the model state. Should only
consist of |
required |
buffer
|
bool
|
a flag for storing the buffer state |
False
|
Returns:
Name | Type | Description |
---|---|---|
agent |
Self
|
a new agent instance with the saved state |
Source code in velora/models/base.py
Python | |
---|---|
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
save(dirpath, *, buffer=False, config=False)
abstractmethod
¶
Saves the current model state into safetensors
and json
files.
Warning
model_config.json
is stored in the dirpath.parent
.
Includes:
model_config.json
- contains the core details of the agent (optional)metadata.json
- contains the model, optimizer and buffer (optional) metadatamodel_state.safetensors
- contains the model weights and biasesoptim_state.safetensors
- contains the optimizer states (actor and critic)buffer_state.safetensors
- contains the buffer state (only ifbuffer=True
)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dirpath
|
str | Path
|
the location to store the model state. Should only
consist of |
required |
buffer
|
bool
|
a flag for storing the buffer state |
False
|
config
|
bool
|
a flag for storing the model's config |
False
|
Source code in velora/models/base.py
Python | |
---|---|
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
set_metadata(values, seed)
¶
Creates the agents metadata based on a given set of local variables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
values
|
Dict[str, Any]
|
local variables |
required |
seed
|
int
|
randomly generated seed |
required |
Returns:
Name | Type | Description |
---|---|---|
metadata |
Dict[str, Any]
|
an updated dictionary of agent metadata. |
Source code in velora/models/base.py
Python | |
---|---|
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
|
state_dict()
¶
Retrieves the agent's module state dictionaries and splits them into categories.
Returns:
Name | Type | Description |
---|---|---|
state_dict |
Dict[Literal['modules', 'optimizers'], Dict[str, Any]]
|
the agent's module state dicts categorized. |
Source code in velora/models/base.py
Python | |
---|---|
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
|